Modifilan (Laminaria japonica)

Thyroid and Immune Stimulant, Detoxification and Energizing Aid from the Sea

ModifilanThis “herb” (a variety of seaweed) might be the most important natural health discovery of the decade!

Modifilan was reportedly developed in Russia by scientists at the State Rehabilitation Institute, where victims of the Chernobyl nuclear catastrophe underwent treatment.

Hand-harvested from far Northern Pacific waters, Laminaria kelp has numerous health properties that set it apart from other species of seaweed.

Beneficial substances found in Modifilan include:

  • Organic iodine: Organic iodine feeds the thyroid gland, promoting normal metabolism and glandular function.
  • Fucoidan: a polysaccharide that promotes cancer cell death (apoptosis) and stimulates the immune system in animal studies. (1-4)
  • Laminarin: a polysaccharide that improves gut health in animal studies.(5)
  • Fucoxanthin: a natural pigment in the carotenoid family, is a potent antioxidant.(6-11)
  • Alginate: a natural polysaccharide that binds water and chelates radioactive toxins such as iodine-131 and strontium-90.(12-14)

Modifilan may be useful for:

  • Boosting the immune system with anti-viral and anti-cancer properties. (1-4, 15-21)
  • Helping lower blood sugar and cholesterol levels. (22-23)
  • Detoxifying the body from heavy metals, radioactive elements, free radicals and toxins.(12-14)
  • Aiding weight loss by improving thyroid, metabolism and GI-tract function.(24-25)
  • Helping smokers detoxify from heavy metals including strontium and cadmium.(12-14)

It takes 40 pounds or raw seaweed (conscientiously harvested to protect habitat) to make one pound of Modifilan.

Put some “pep in your step,” stimulate weight loss and energy while improving your immune system. This specially processed Laminaria is truly a unique gift from the sea.

Dr. Myatt’s Comment: Many of the “anti-cancer” and immune claims for Modifilan and other seaweed products have not yet been substantiated in humans. However, Modifilan is an excellent source of organic iodine and should be considered by anyone with low thyroid function.

Suggested dose:

For general health maintenance, 4-6 capsules per day.
For heavy metal chelation: 12 capsules per day.
For cancer: as directed by your physician (usually 6-12 capsules per day in divided doses).

Sorry – this item is currently unavailable.

References

1.) Funahashi H, Imai T, Mase T, et al. Seaweed prevents breast cancer? Jpn J Cancer Res. 2001;92(5):483-487.
2.) Furusawa E, Furusawa S. Anticancer potential of Viva-Natural, a dietary seaweed extract, on Lewis lung carcinoma in comparison with chemical immunomodulators and on cyclosporine-accelerated AKR leukemia. Oncology. 1989;46(5):343-348.
3.) Itoh H, Noda H, Amano H, et al. Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res. 1993;13(6A):2045-2052.
4.) Go H, Hwang HJ, Nam TJ. A glycoprotein from Laminaria japonica induces apoptosis in HT-29 colon cancer cells. Toxicol In Vitro. 2010 Sep;24(6):1546-53. Epub 2010 Jul 6.
5.) Lynch MB, Sweeney T, Callan JJ, O’Sullivan JT, O’Doherty JV. The effect of dietary Laminaria-derived laminarin and fucoidan on nutrient digestibility, nitrogen utilisation, intestinal microflora and volatile fatty acid concentration in pigs. J Sci Food Agric. 2010 Feb;90(3):430-7.
6.) Park PJ, Kim EK, Lee SJ, Park SY, Kang DS, Jung BM, Kim KS, Je JY, Ahn CB. Protective effects against H2O2-induced damage by enzymatic hydrolysates of an edible brown seaweed, sea tangle (Laminaria japonica). J Med Food. 2009 Feb;12(1):159-66.
7.) Wang J, Zhang Q, Zhang Z, Li Z. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int J Biol Macromol. 2008 Mar 1;42(2):127-32. Epub 2007 Oct 9.
8.) Wang J, Wang F, Zhang Q, Zhang Z, Shi X, Li P. Synthesized different derivatives of low molecular fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro. Int J Biol Macromol. 2009 Jun 1;44(5):379-84. Epub 2009 Feb 13.
9.) Wang J, Zhang Q, Zhang Z, Song H, Li P. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int J Biol Macromol. 2010 Jan 1;46(1):6-12. Epub 2009 Oct 31.
10.) Yan X, Chuda Y, Suzuki M, Nagata T. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci Biotechnol Biochem 1999;63:605–7.
11.) Sachindra NM, Sato E, Maeda H, et al. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem 2007;55:8516–22.
12.) Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003 Nov;37(18):4311-30.
13.) Sutton, A., Harrison, G. E., Carr, T. E., and Barltrop, D. Reduction in the absorption of dietary strontium in children by an alginate derivative. Br. J.Radiol. 44[523], 567. 1971.
14.) Sutton, A., Harrison, B. E., Carr, T. E., and Barltrop, D. Reduction in the absorption of dietary strontium in children by an alginate derivative. Int.J.Radiat.Biol.Relat Stud.Phys.Chem.Med. 19[1], 79-85. 1971
15.) [No authors listed][Production of cytokines by murine bone marrow dendritic cells in vitro mediated by sulfated polysaccharides obtained from sea brown algae].Zh Mikrobiol Epidemiol Immunobiol. 2010 Sep-Oct;(5):34-9. [Article in Russian]
16.) Damonte EB, Matulewicz MC, Cerezo AS. Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem. 2004 Sep;11(18):2399-419.
17.) Gerasimenko NI, Chaĭkina EL, Busarova NG, Anisimov MM. [Antimicrobic and hemolytic activity of low-molecular metabolits of brown seaweed Laminaria cichorioides Miyabe].Prikl Biokhim Mikrobiol. 2010 Jul-Aug;46(4):467-71. [Article in Russian]
18.) Ishikawa C, Tafuku S, Kadekaru T, Sawada S, Tomita M, Okudaira T, Nakazato T, Toda T, Uchihara JN, Taira N, Ohshiro K, Yasumoto T, Ohta T, Mori N. Anti-adult T-cell leukemia effects of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. Int J Cancer. 2008 Dec 1;123(11):2702-12.
19.) Kim KN, Heo SJ, Kang SM, Ahn G, Jeon YJ. Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway. Toxicol In Vitro. 2010 Sep;24(6):1648-54. Epub 2010 Jun 8.
20.) Makarenkova ID, Deriabin PG, L’vov DK, Zviagintseva TN, Besednova NN. [Antiviral activity of sulfated polysaccharide from the brown algae Laminaria japonica against avian influenza A (H5N1) virus infection in the cultured cells]. Vopr Virusol. 2010 Jan-Feb;55(1):41-5. [Article in Russian].
21.) Yamamoto K, Ishikawa C, Katano H, Yasumoto T, Mori N. Fucoxanthin and its deacetylated product, fucoxanthinol, induce apoptosis of primary effusion lymphomas. Cancer Lett. 2010 Nov 13. [Epub ahead of print]
22.) Bu T, Liu M, Zheng L, Guo Y, Lin X. α-Glucosidase inhibition and the in vivo hypoglycemic effect of butyl-isobutyl-phthalate derived from the Laminaria japonica rhizoid. Phytother Res. 2010 Nov;24(11):1588-91. doi: 10.1002/ptr.3139.
23.) Woo MN, Jeon SM, Kim HJ, Lee MK, Shin SK, Shin YC, Park YB, Choi MS. Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice. Chem Biol Interact. 2010 Aug 5;186(3):316-22. Epub 2010 May 16.
24.) Woo MN, Jeon SM, Shin YC, Lee MK, Kang MA, Choi MS. Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol Nutr Food Res. 2009 Dec;53(12):1603-11.
25.) You JS, Sung MJ, Chang KJ. Evaluation of 8-week body weight control program including sea tangle (Laminaria japonica) supplementation in Korean female college students. Nutr Res Pract. 2009 Winter;3(4):307-14. Epub 2009 Dec 31.